Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions.

Identifieur interne : 000967 ( Main/Exploration ); précédent : 000966; suivant : 000968

Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions.

Auteurs : Aurélien Bailly [Suisse] ; Laure Weisskopf [Suisse]

Source :

RBID : pubmed:28890716

Abstract

Microbial lifeforms associated with land plants represent a rich source for crop growth- and health-promoting microorganisms and biocontrol agents. Volatile organic compounds (VOCs) produced by the plant microbiota have been demonstrated to elicit plant defenses and inhibit the growth and development of numerous plant pathogens. Therefore, these molecules are prospective alternatives to synthetic pesticides and the determination of their bioactivities against plant threats could contribute to the development of control strategies for sustainable agriculture. In our previous study we investigated the inhibitory impact of volatiles emitted by Pseudomonas species isolated from a potato field against the late blight-causing agent Phytophthora infestans. Besides the well-documented emission of hydrogen cyanide, other Pseudomonas VOCs impeded P. infestans mycelial growth and sporangia germination. Current advances in the field support the emerging concept that the microbial volatilome contains unexploited, eco-friendly chemical resources that could help select for efficient biocontrol strategies and lead to a greener chemical disease management in the field.

DOI: 10.3389/fmicb.2017.01638
PubMed: 28890716
PubMed Central: PMC5574903


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions.</title>
<author>
<name sortKey="Bailly, Aurelien" sort="Bailly, Aurelien" uniqKey="Bailly A" first="Aurélien" last="Bailly">Aurélien Bailly</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of ZurichZurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of ZurichZurich</wicri:regionArea>
<wicri:noRegion>University of ZurichZurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Institute for Sustainability SciencesZurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Institute for Sustainability SciencesZurich</wicri:regionArea>
<wicri:noRegion>Institute for Sustainability SciencesZurich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisskopf, Laure" sort="Weisskopf, Laure" uniqKey="Weisskopf L" first="Laure" last="Weisskopf">Laure Weisskopf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Institute for Sustainability SciencesZurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Institute for Sustainability SciencesZurich</wicri:regionArea>
<wicri:noRegion>Institute for Sustainability SciencesZurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of FribourgFribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of FribourgFribourg</wicri:regionArea>
<wicri:noRegion>University of FribourgFribourg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28890716</idno>
<idno type="pmid">28890716</idno>
<idno type="doi">10.3389/fmicb.2017.01638</idno>
<idno type="pmc">PMC5574903</idno>
<idno type="wicri:Area/Main/Corpus">000915</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000915</idno>
<idno type="wicri:Area/Main/Curation">000915</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000915</idno>
<idno type="wicri:Area/Main/Exploration">000915</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions.</title>
<author>
<name sortKey="Bailly, Aurelien" sort="Bailly, Aurelien" uniqKey="Bailly A" first="Aurélien" last="Bailly">Aurélien Bailly</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Microbial Biology, University of ZurichZurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of ZurichZurich</wicri:regionArea>
<wicri:noRegion>University of ZurichZurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Institute for Sustainability SciencesZurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Institute for Sustainability SciencesZurich</wicri:regionArea>
<wicri:noRegion>Institute for Sustainability SciencesZurich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisskopf, Laure" sort="Weisskopf, Laure" uniqKey="Weisskopf L" first="Laure" last="Weisskopf">Laure Weisskopf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Institute for Sustainability SciencesZurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Institute for Sustainability SciencesZurich</wicri:regionArea>
<wicri:noRegion>Institute for Sustainability SciencesZurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of FribourgFribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of FribourgFribourg</wicri:regionArea>
<wicri:noRegion>University of FribourgFribourg</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbial lifeforms associated with land plants represent a rich source for crop growth- and health-promoting microorganisms and biocontrol agents. Volatile organic compounds (VOCs) produced by the plant microbiota have been demonstrated to elicit plant defenses and inhibit the growth and development of numerous plant pathogens. Therefore, these molecules are prospective alternatives to synthetic pesticides and the determination of their bioactivities against plant threats could contribute to the development of control strategies for sustainable agriculture. In our previous study we investigated the inhibitory impact of volatiles emitted by
<i>Pseudomonas</i>
species isolated from a potato field against the late blight-causing agent
<i>Phytophthora infestans</i>
. Besides the well-documented emission of hydrogen cyanide, other
<i>Pseudomonas</i>
VOCs impeded
<i>P. infestans</i>
mycelial growth and sporangia germination. Current advances in the field support the emerging concept that the microbial volatilome contains unexploited, eco-friendly chemical resources that could help select for efficient biocontrol strategies and lead to a greener chemical disease management in the field.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28890716</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions.</ArticleTitle>
<Pagination>
<MedlinePgn>1638</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2017.01638</ELocationID>
<Abstract>
<AbstractText>Microbial lifeforms associated with land plants represent a rich source for crop growth- and health-promoting microorganisms and biocontrol agents. Volatile organic compounds (VOCs) produced by the plant microbiota have been demonstrated to elicit plant defenses and inhibit the growth and development of numerous plant pathogens. Therefore, these molecules are prospective alternatives to synthetic pesticides and the determination of their bioactivities against plant threats could contribute to the development of control strategies for sustainable agriculture. In our previous study we investigated the inhibitory impact of volatiles emitted by
<i>Pseudomonas</i>
species isolated from a potato field against the late blight-causing agent
<i>Phytophthora infestans</i>
. Besides the well-documented emission of hydrogen cyanide, other
<i>Pseudomonas</i>
VOCs impeded
<i>P. infestans</i>
mycelial growth and sporangia germination. Current advances in the field support the emerging concept that the microbial volatilome contains unexploited, eco-friendly chemical resources that could help select for efficient biocontrol strategies and lead to a greener chemical disease management in the field.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bailly</LastName>
<ForeName>Aurélien</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of ZurichZurich, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Agroscope, Institute for Sustainability SciencesZurich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weisskopf</LastName>
<ForeName>Laure</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Agroscope, Institute for Sustainability SciencesZurich, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biology, University of FribourgFribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Pseudomonas</Keyword>
<Keyword MajorTopicYN="N">biocontrol</Keyword>
<Keyword MajorTopicYN="N">microbiome</Keyword>
<Keyword MajorTopicYN="N">phytophthora</Keyword>
<Keyword MajorTopicYN="N">potato</Keyword>
<Keyword MajorTopicYN="N">volatile organic compounds</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28890716</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2017.01638</ArticleId>
<ArticleId IdType="pmc">PMC5574903</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25897128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2015;2015:139254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26495281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 May 08;14(5):9803-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jan 16;7:40481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28091587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Sep;54(9):2167-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3190224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Jul;8(7):e1002784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22792073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2011 Feb;84(2):258-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Jan;7(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22301973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1866-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24689847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21886785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2009 Jan;81(6):1001-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19020812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2004 Jul;86(1):1-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Bacteriol. 1994 Apr;76(4):395-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8200865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2014 Dec;104(12):1289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24941327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Prot. 2013 Nov;76(11):1879-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24215691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Jun 11;5:289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24966854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Apr;37(4):813-826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24127750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2015 Oct;23(10):606-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26422463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2016 Jul;42(7):590-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27492468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Aug;21(8):1067-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Microbiol. 2015 May;47:85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2012 Oct;64(3):725-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22576821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2014 Nov;196(11):803-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2011 Oct;33(10):1905-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21660571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Agric Appl Biol Sci. 2007;72(2):353-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18399463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Jan 05;6:1495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26779150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2014 May-Jun;169(5-6):325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24144612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Aug;81(3):705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21651627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Nov 23;6:1295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Aug;78(16):5942-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Med Chem. 2016 Nov 10;123:514-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27494168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2015 Aug;119(2):487-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25989039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2006 Feb 1;78(3):779-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Apr;11(4):844-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Apr;3(4):307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15759041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Nov 03;6:1212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2016 Oct;100(20):8651-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27638017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Nov;97(21):9525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24013222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Apr;20(4):206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25659880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Breath Res. 2016 Jan 29;10(1):016002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26824272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:807-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2014 Oct;32(10):493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25246168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Sep;73(17):5639-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2012 Sep;113(3):701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2015 Nov;108(5):1047-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Bacteriol. 1993 Feb;74(2):119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8444640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Oct;67(20):2262-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2008;163(3):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16890413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2016 Aug;92 (8):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27222220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D744-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24311565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Microbiol. 2007 Dec;47(4):289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23100680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Math Biol. 2011 Nov;63(5):959-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21234569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Breath Res. 2015 Apr 01;9(2):027104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25830686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2012 Oct;102(10):967-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22713078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2007 May;187(5):351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17180381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Mar;75(3):351-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21204870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Sci. 2012 May;77(5):M278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22497489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Nov 27;6:1309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26640460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2016 Jul;32(7):120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27263015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2015 Apr 15;63(14):3681-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25797910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Breath Res. 2014 Mar;8(1):014001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24421258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2013 Aug;51(4):477-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23990299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2007 Aug;24(4):814-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2013 Jan;23(1):29-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23314364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 15;8(5):e63538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23691060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2015 Mar;39(2):222-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25725014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Environ. 2013;28(1):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23080408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2011 Jul;101(7):859-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21323467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Dec 18;6:1412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26733959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 14;6:707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Oct 06;6:1091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26500631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycotoxin Res. 2014 May;30(2):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24504634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Aug;19(8):924-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16903358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Feb;77(3):1000-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Oct 06;6:1056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26500617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Dec;10(12):828-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Feb;81(3):821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25398872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2016 Jul 12;9(4):e1197445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27574539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Jul;39(7):840-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vitam Horm. 2010;83:493-519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Mar;28(3):212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25514681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Feb;8(2):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2005;160(1):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15782941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Mar;77(5):1548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21216911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Apr 30;3(4):e2073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18446201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):761-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17827110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Aug;7(8):1267-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioengineered. 2013 Jul-Aug;4(4):236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23680857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:347-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24906124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 May 13;14:130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Apr;90(6):677-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26177913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Nov;13(11):3047-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2010 Jan;156(Pt 1):270-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19797357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Jul;39(7):892-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23832658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Breath Res. 2016 Aug 10;10 (3):037102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27506232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2016 Feb;71(2):347-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26408189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 18;334(6058):986-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22096201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 13;6:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25821453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2014 Oct;117(4):1144-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24962812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Jun;38(6):665-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22653567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2015 Sep 14;54(38):11036-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26235374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
</list>
<tree>
<country name="Suisse">
<noRegion>
<name sortKey="Bailly, Aurelien" sort="Bailly, Aurelien" uniqKey="Bailly A" first="Aurélien" last="Bailly">Aurélien Bailly</name>
</noRegion>
<name sortKey="Bailly, Aurelien" sort="Bailly, Aurelien" uniqKey="Bailly A" first="Aurélien" last="Bailly">Aurélien Bailly</name>
<name sortKey="Weisskopf, Laure" sort="Weisskopf, Laure" uniqKey="Weisskopf L" first="Laure" last="Weisskopf">Laure Weisskopf</name>
<name sortKey="Weisskopf, Laure" sort="Weisskopf, Laure" uniqKey="Weisskopf L" first="Laure" last="Weisskopf">Laure Weisskopf</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000967 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000967 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28890716
   |texte=   Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28890716" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024